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“People try to copy Netflix,
but they can only copy what they see.

They copy the results, not the process.”
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One collaboration product

One technology stack
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Productivity suffered
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Usability/UX suffered
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" Background
Separate, Autonomous Teams
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Background
Our Motivation for Microservices

AutonomOUS " Work at different parts
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{Develop independently Deploylndependently Scale mdependently :,3
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Loose coupling between services
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High cohesion within a service



Decomposition Strategy
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J REST API

: gi* owns profile " document
‘ state 8 Created by
" author

/T 2k owns document |
.| | state




J REST API
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N publlsh ~ Message Broker """"""""" DB Adapter
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REST API
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Good approach in general, /" New Business Logic
=/

but we did too many steps at once

\\\ Message Broker
| Adapter

=> Not optimal to start with

O New Data Structure
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REST API

Monolith uses

extracted business logic
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REST Client
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Greatest benefit

\ after extraction

Different Resource

N . . _ Consumption
— Early experiences w/ Microservices P



" Cross-Cutting Concerns *.

O% Authorization

JUST DRIVE JUST WIKI

Inter-service dependency

Fine-grained authorization



ross-Cutting Concerns *,
> Authorization "

Ok, then I am putting my code

| have a new service

that needs authorization. Where is

the authz service | could use?

to the place where authz handling

exists ... to the monolith.

Feeding the monolith

V-

Ok, then | am implementing authz

in my local service.

Re-implementing authz w/ every

new service



" Cross-Cutting Concerns *,
\ “| ) Handle Them Early

6 Feeding the monolith

_/_\ Re-implementing authz w/ every
new service

@ Handle Cross-Cutting Concerns Early
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common contract

Authz Service
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ow To Manage Shared Data? .

‘ 2 Source Of Truth

Multiple sources of truth

Internal source of truth

External source of truth

“Traditional” Event-Driven System

Single source of truth

~____ Eventlog

Events as first-class citizens

Event Store
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Messaging System Storage System Streaming Platform




" How To Manage Shared Data? ‘.
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Do oo Kafka Streams

Unbounded, ordered sequence
of data records

~ Continuously Key-value Jpair
updating



How To Manage Shared Data?
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Do oo Kafka Streams

: Running in the same process
Service

of Microservice
Loaded on startup of

-----

Microservice
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Kafka Topic

Lightweight embedded state store (disk-backed)

/
/
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Streams make data available wherever it's needed '~
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Materialized View as State Store

Stream-Table-Join

Table for enrichment



How To Manage Shared Data? E—
Q 9 Event Streams as a Shared Source of Truth

J— Fvent streams as a

---------------------- = shared source of truth

« Simple integration « Eliminating remote query => « Eliminating local copy => reduces
« Remote query => increasing coupling better decoupling duplicating effort
« Local copy => better autonomy « Pushes data to where it's needed
+ Duplicating effort to maintain « Increases pluggability
local dataset e Low barrier to entry for new

service
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@ Lessons Learned
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Start small One manageable step at a time Handle cross-cutting concerns early
Avoid a distributed monolith Design event-driven & consider Be aware of affecting circumstances

&

Each journey is different :)

event streams as shared source of truth
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