% . .
@ A Microservices Journey

Susanne Kaiser

@suksr

E >(- CTO at Just Software

@JustSocialApps

@ ________________

“People try to copy Netflix,
but they can only copy what they see.

They copy the results, not the process.”

Each Journey Is leferent
Affectmg chumstances

Team Lo Y
| ¢
B—%—E[@ D
Structure Skillset Journey

@ - Each Journey is leferent
VT Affecting chumstances %
- : T Legacy

NoRsTNy — N

T Maintenance Runtime
€am d @ . effort environment
@ \3 | |
4 ' (;f
Structure Skillset Journey

@ - Each Journey is leferent
MV Affecting Circumstances %
' T Legacy

¢¢¢¢¢

a8 — K &

~ Maintenance Runtime
Team /’j effort environment
| | <;;> ¢ |
| <)
g%—t[@ D
Structure Skillset Journey

éé%%%%% E \\ - <§\\\\\ ég‘-—:r Strategy . .
Size R$8 ygﬁ' { Etj@ FO-0-0> L

New Features Timeline / Milestones

JUST SOCIAL

e Tt O<>

s 3
@ O O
0 o) (B8

JUST DRIVE JUST CONNECT JUST LIST JUST WIKI

o <><>%<>

JUST PEOPLE JUST NEWS

L

ans

One team

Single Unit

Y
R
Q&

One collaboration product

One technology stack

.

.

\/

Productivity suffered /

.....

\/

Productivity suffered

O3/

Usability/UX suffered

.....

e w W
Productivity suffered

/ New features released slowly
m 5

O3/

Usability/UX suffered

E‘x._._{DDDQDD Separate Collaboration Apps‘;’

.

o
&2

JUST SOCIAL

<Q <
2 O O

JUST DRIVE

JUST CONNECT JUST LIST

o <><><><>o

JUST PEOPLE JUST NEWS

JUST WIKI

" Background
Separate, Autonomous Teams

.

QR

Background :
In The LongRun ~ /

&
& O
B——00
0
OR2 ; |
B—le)l& 00
@—)k O 0

Organisation Product Software

Background
Our Motivation for Microservices

AutonomOUS " Work at different parts

.............

{Develop independently Deploylndependently Scale mdependently :,3

teams mdependently T T

>t Atdlfferent

s speed ;

N . -

Loose coupling between services

J

_

High cohesion within a service

Decomposition Strategy
D |dentify Bounded Contexts

Lt

N .

Loose coupling between services

J

_

High cohesion within a service

X Bounded Context

P RO L LT L

: g Well-defined
Y business function

Semantic boundary
around domain model

i

' Decomposition Strategy
D |dentify Bounded Contexts

.t

R

.

— S

_ JUST DRIVE JUST CONNECT JUST LIST

~Q Q ,o;o"":.
— OO O ©<><>C<>
_________________________________ S5S O <><><> <><><>

JUST PEOPLE JUST NEWS JUST WIKI

L.
/
4
.
i
'
1
'
'
'
v
'
[
'
[
[y
'
\

.....

........

<><><> O
RS &S
JUST IDRlVE JUST PEOPLE

.............

.............

J REST API

O
|

DB Adapter

/T 2k owns document |
.| | state

J REST API

: gi* owns profile " document
‘ state 8 Created by
" author

/T 2k owns document |
.| | state

J REST API

) { subscrlbe L |
N publlsh ~ Message Broker """"""""" DB Adapter
N state Events

owns document j:

i]j D

local copy

. ofauthor

REST API

. New Ul
___ | //// - |
/
Good approach in general, /" New Business Logic
=/

but we did too many steps at once

\\\ Message Broker
| Adapter

=> Not optimal to start with

O New Data Structure
5 .

VS.

~

\

pplication-Service

Domain-Model

Domain-Event

DB Adapter ‘

\\‘

'/,
5
(@)
-
D
3
(D
-
—+
QL
_i
O
©
O
%
3

s 1

7—J REST API
/_// REST Client

) @@ [}

Decomposition Strategy
;"’2 o Incremental Top Down

REST API

Monolith uses

extracted business logic

.........

REST Client

Decomposition Strategy

ON IncrementaITop Down -

J REST API

.........

Message Broker [\s-oo-eemomeemmnmness
Adapter

v . Csubscrioe |\
|

........................ L ; Message Broker

S DDUD@

Events

emwSa

......

Greatest benefit

\ after extraction

Different Resource

N . . _ Consumption
— Early experiences w/ Microservices P

" Cross-Cutting Concerns *.

O% Authorization

JUST DRIVE JUST WIKI

Inter-service dependency

Fine-grained authorization

ross-Cutting Concerns *,
> Authorization "

Ok, then I am putting my code

| have a new service

that needs authorization. Where is

the authz service | could use?

to the place where authz handling

exists ... to the monolith.

Feeding the monolith

V-

Ok, then | am implementing authz

in my local service.

Re-implementing authz w/ every

new service

" Cross-Cutting Concerns *,
\ “|) Handle Them Early

6 Feeding the monolith

/\ Re-implementing authz w/ every
new service

@ Handle Cross-Cutting Concerns Early

C§</> thz Service
() 4

Co

common contract

Authz Service

,~ Serwce Interaction S,
C><_>C> Request-Driven / Event- Dr|ven

command

Message Broker

e [JUUO

-:f pubhsh © ‘subscribe

Request-Driven Event-Driven

command

Message Broker

DDDDD

4 pubhsh © {subscribe

Events

Hybrid

Remote query

", d|rectly to source x

D L] Dﬁ]\

.......

5 Message Broker /

DDDD@]

@ Local copy of .
= profile data

ow To Manage Shared Data? .

‘ 2 Source Of Truth

Multiple sources of truth

Internal source of truth

External source of truth

“Traditional” Event-Driven System

Single source of truth

~____ Eventlog

Events as first-class citizens

Event Store

Message Broker

D000

oo | Bozoo

~___ EventlLog Event Stream

Messaging System Storage System Streaming Platform

" How To Manage Shared Data? ‘.

0y

Do oo Kafka Streams

Unbounded, ordered sequence
of data records

~ Continuously Key-value Jpair
updating

How To Manage Shared Data?

0y

Do oo Kafka Streams

: Running in the same process
Service

of Microservice
Loaded on startup of

Microservice

\ '
0000

Kafka Topic

Lightweight embedded state store (disk-backed)

/
/
/

Streams make data available wherever it's needed '~

RN
e

Y filter

join

group by

r.)% aggregate

............................
.............................

...............................

(key1, valuel), (key2, value2), (key 1, value 3)

/—\
Yy >
~ =
—
KStream KTable

Changelog of state changes Snapshot of the latest

value for each key

key1l— value3

key2 — value2

..

.....................

Materialized View as State Store

Stream-Table-Join

Table for enrichment

How To Manage Shared Data? E—
Q 9 Event Streams as a Shared Source of Truth

J— Fvent streams as a

---------------------- = shared source of truth

« Simple integration « Eliminating remote query => « Eliminating local copy => reduces
« Remote query => increasing coupling better decoupling duplicating effort
« Local copy => better autonomy « Pushes data to where it's needed
+ Duplicating effort to maintain « Increases pluggability
local dataset e Low barrier to entry for new

service

S

@ Lessons Learned

@
‘ —|
>t
Start small One manageable step at a time Handle cross-cutting concerns early
Avoid a distributed monolith Design event-driven & consider Be aware of affecting circumstances

&

Each journey is different :)

event streams as shared source of truth

HANK, YOU

Susanne Kaiser

@suksr

E >(— CTO at Just Software

@JustSocialApps

