

A Microservices Journey
Susanne Kaiser

@suksr

CTO at Just Software
@JustSocialApps

Each Journey is Different

“People try to copy Netflix,
but they can only copy what they see.
They copy the results, not the process.”

Adrian Cockcroft, AWS VP Cloud Architect,
former Netflix Chief Cloud Architect

Each Journey is Different

Team

Structure Skillset

Size

Journey

Affecting Circumstances

Each Journey is Different

Team

Structure Skillset

Size

Journey

Legacy

Maintenance
effort

Runtime
environment

Affecting Circumstances

Each Journey is Different

Team

Structure Skillset

Size

Journey

Legacy

Maintenance
effort

Runtime
environment

Strategy

New Features Timeline / Milestones

Affecting Circumstances

Background

JUST DRIVE JUST CONNECT JUST LIST JUST WIKI

JUST PEOPLE JUST NEWS

JUST SOCIAL

One team
Single Unit

One collaboration product

One technology stack

At the Beginning
A Monolith in Every Aspect

Background
After an Evolving Time

Background
After an Evolving Time

Productivity suffered

Background
After an Evolving Time

Productivity suffered

Usability/UX suffered

Background
After an Evolving Time

Productivity suffered

Usability/UX suffered

New features released slowly

JUST DRIVE JUST CONNECT JUST LIST JUST WIKI

JUST PEOPLE JUST NEWS

JUST SOCIAL

Background
Separate Collaboration Apps

Background
Separate, Autonomous Teams

Well-defined responsibilites

Background
In The Long Run

Organisation Product Software

Background
Our Motivation for Microservices

Autonomous
teams

Develop independently Deploy independentlyWork at different parts
independently

Scale independently

At different
speed

Identify Bounded Contexts
Decomposition Strategy

High cohesion within a service

Loose coupling between services

Identify Bounded Contexts
Decomposition Strategy

High cohesion within a service

Loose coupling between services

Bounded Context

Related behaviour

Semantic boundary
around domain model

Well-defined
business function

Identify Bounded Contexts
Decomposition Strategy

JUST DRIVE JUST CONNECT JUST LIST

JUST WIKIJUST PEOPLE JUST NEWS

Bounded Contexts

JUST DRIVE

Decomposition Strategy
Co-Existing Service From Scratch

JUST DRIVE

Decomposition Strategy
Co-Existing Service From Scratch

JUST PEOPLE

Decomposition Strategy
Co-Existing Service From Scratch

owns document
state

REST API

Application-Service

Domain-Model

DB Adapter
Monolith

JUST DRIVE

Decomposition Strategy
Co-Existing Service From Scratch

owns document
state

owns profile
state

document
created by
author

Monolith

REST API

Application-Service

Domain-Model

DB Adapter

owns document
state

owns profile
state Events

local copy
of author

Message Broker

Decomposition Strategy
Co-Existing Service From Scratch

REST API

Application-Service

Domain-Model

DB Adapter

Message Broker
Adapter

Monolith
publish

subscribe

DB Adapter

Message Broker
Adapter

Application-Service

Domain-Model

REST API

Domain-Event

Good approach in general,

but we did too many steps at once

New UI

New Business Logic

New Data Structure

=> Not optimal to start with

vs.

Decomposition Strategy
Co-Existing Service From Scratch

Incremental Top Down

Extracting Web App

Decomposition Strategy

Monolith

REST API

REST API

REST Client

Monolith

REST API

Extracting Business Logic

Application-Service

Domain-Model

DB Adapter

REST Client

Incremental Top Down
Decomposition Strategy

Monolith uses
extracted business logic

Monolith

Splitting Data Storage

Incremental Top Down
Decomposition Strategy

REST API

Application-Service

Domain-Model

DB Adapter

Events

Message Broker

Message Broker
Adapter

publish
subscribe

Which One First?

vs.

Easy to Extract

Changing Frequently

Different Resource
ConsumptionEarly experiences w/ Microservices

Greatest benefit
after extraction

Decomposition Strategy

Cross-Cutting Concerns
Authorization

JUST DRIVE JUST WIKI

Fine-grained authorization

Inter-service dependency

Cross-Cutting Concerns

I have a new service
that needs authorization. Where is
the authz service I could use?

Not there, yet. Sorry!

Ok, then I am putting my code
to the place where authz handling
exists … to the monolith.

Feeding the monolith Re-implementing authz w/ every
new service

Ok, then I am implementing authz
in my local service.

Authorization

Cross-Cutting Concerns
Handle Them Early

Feeding the monolith

Re-implementing authz w/ every
new service

Handle Cross-Cutting Concerns Early

Cross-Cutting Concerns
Avoid A Distributed Monolith

Authz Service

Cross-Cutting Concerns
Avoid A Distributed Monolith

Authz Servicetranslate

One stable
common contract

translate

translate

Service Interaction
Request-Driven / Event-Driven

command

query Events
Message Broker

publish subscribe

command

query

Request-Driven Hybrid

Events
Message Broker

publish subscribe

Event-Driven

How To Manage Shared Data?
Hybrid Model

Message Broker

REST API

Remote query
directly to source

Events for notification

Event Driven State Transfer

Message Broker

Local copy of
profile data

ProfileUpdatedEvent

How To Manage Shared Data?

Events for data duplication

Source Of Truth
How To Manage Shared Data?

Internal source of truth

External source of truth

Multiple sources of truth Single source of truth

Events as first-class citizens

“Traditional” Event-Driven System Event Store

Event Log

Messaging System Storage System Streaming Platform

Message Broker

Event Log Event Stream

How To Manage Shared Data?
Kafka Streams

Unbounded, ordered sequence
of data records

Key-value pairContinuously
updating

How To Manage Shared Data?
Kafka Streams

Kafka Topic
Lightweight embedded state store (disk-backed)

Service Running in the same process
of Microservice

Loaded on startup of
Microservice

Streams make data available wherever it’s needed

How To Manage Shared Data?
Kafka Streams

Kafka Streams API

join

filter

group by

aggregate

etc.

Changelog of state changes
KStream KTable

Snapshot of the latest
 value for each key

Kafka Stream-Table Duality

(key1, value1), (key2, value2), (key 1, value 3) key1 value3→

key2 value2→

How To Manage Data?
Materialized Views w/ Kafka Streams

Kafka
Table for enrichment

Document Service

Stream REST API

Materialized View as State Store

Stream-Table-Join

How To Manage Shared Data?
Event Streams as a Shared Source of Truth

Events for notification Events for data duplication

● Simple integration
● Remote query => increasing coupling

● Eliminating remote query =>
better decoupling

● Local copy => better autonomy
● Duplicating effort to maintain

local dataset

● Simple integration
● Remote query => increasing coupling

Event streams as a
shared source of truth

● Eliminating local copy => reduces
duplicating effort

● Pushes data to where it’s needed
● Increases pluggability
● Low barrier to entry for new

service

Start small One manageable step at a time

Lessons Learned

Handle cross-cutting concerns early

Avoid a distributed monolith Be aware of affecting circumstances
&

Each journey is different :)

Design event-driven & consider
event streams as shared source of truth

Susanne Kaiser
@suksr

CTO at Just Software
@JustSocialApps

